Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 126: 112125, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082942

RESUMO

In transdermal drug delivery applications uniform drug distribution and sustained release are of great importance to decrease the side effects. In this direction in the present research, vanillin crosslinked chitosan (CS) and polyvinyl alcohol (PVA) blend based matrix-type transdermal system was prepared by casting and drying of aqueous solutions for local delivery of enrofloxacin (ENR) drug. Subsequently, the properties including the morphology, chemical structure, thermal behavior, tensile strength, crosslinking degree, weight uniformity, thickness, swelling and drug release of the CS-PVA blend films before and after crosslinking were characterized. In vitro drug release profiles showed the sustained release of ENR by the incorporation of vanillin as a crosslinker into the CS-PVA polymer matrix. Furthermore, the release kinetic profiles revealed that the followed mechanism for all samples was Higuchi and the increase of vanillin concentration in the blend films resulted in the change of diffusion mechanism from anomalous transport to Fickian diffusion. Overall, the obtained results suggest that the investigated vanillin crosslinked CS-PVA matrix-type films are potential candidates for transdermal drug delivery system.


Assuntos
Quitosana , Álcool de Polivinil , Benzaldeídos , Preparações de Ação Retardada , Enrofloxacina
2.
Materials (Basel) ; 13(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825117

RESUMO

Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.

3.
Polymers (Basel) ; 12(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492821

RESUMO

Poly(ethylene oxide) (PEO)-like thin films were successfully prepared by plasma-assisted vapor thermal deposition (PAVTD). PEO powders with a molar weight (Mw) between 1500 g/mol and 600,000 g/mol were used as bulk precursors. The effect of Mw on the structural and surface properties was analyzed for PEO films prepared at a lower plasma power. Fourier transform (FTIR-ATR) spectroscopy showed that the molecular structure was well preserved regardless of the Mw of the precursors. The stronger impact of the process conditions (the presence/absence of plasma) was proved. Molecular weight polydispersity, as well as wettability, increased in the samples prepared at 5 W. The influence of deposition plasma power (0-30 W) on solubility and permeation properties was evaluated for a bulk precursor of Mw 1500 g/mol. The rate of thickness loss after immersion in water was found to be tunable in this way, with the films prepared at the highest plasma power showing higher stability. The effect of plasma power deposition conditions was also shown during the permeability study. Prepared PEO films were used as a cover, and permeation layers for biologically active nisin molecule and a controlled release of this bacteriocin into water was achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...